Step of Proof: trans_rel_self_functionality
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
trans
rel
self
functionality
:
1.
T
: Type
2.
R
:
T
T
3.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
4.
a
:
T
5.
a'
:
T
6.
b
:
T
7.
b'
:
T
8.
R
(
b
,
a
)
9.
R
(
a'
,
b'
)
10.
R
(
a
,
a'
)
R
(
b
,
b'
)
latex
by ((((FHyp 3 [9;10])
CollapseTHENM (FHyp 3 [8;11]))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
origin